Vassiliki-Alexandra Glezakou
Pacific Northwest National Laboratory, USA
Title: Molecular design strategies for task-specific solvent technologies
Biography
Biography: Vassiliki-Alexandra Glezakou
Abstract
CO2 capture from power plant exhaust is a complex problem that requires the capture and removal of massive quantities of gases. Solvent technologies for CO2 capture and conversion have become one of the most promising solutions with aqueous amines being one of the industrial standards. However, their high regeneration costs render them prohibitive for many of the large-scale applications in power generation. My presentation will outline the computational approach used toward the deliberate design of single-molecule CO2-bidining transformational solvents. These types of solvents constitute an attractive alternative to the water-based solvents, but are hampered by exponentially increasing viscosities at high CO2 saturation. Using state-of-the-art computational methods, like enhanced sampling methods for reaction free energetics in explicit solvent models using ab initio molecular dynamics, we describe the key structural parameters that allowed us to create reduced models for fast screening of solvent libraries. This approach led to tangible hypotheses as to the synthetic protocols that have already identified candidate molecules with appreciable viscosity reductions at target loading levels.